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ABSTRACT 

Given e, we cons t ruc t  a sequence ~-1, F 2 , . . .  of Borel sub-s igma-algebras  

on the  uni t  in terval  w i th  the  following property.  Suppose the  iden t i ty  

funct ion f (x)  ~ x is t ransformed by successive condi t ioning  on -~-1, t hen  

.T'2, . . .  , t hen  ~-n, . . .  �9 Then  the l imsup ,  wi th  respect  to n, will exceed 

(pointwise a lmost -everywhere)  1 - e and  i ts  lira inf will be less t h a n  e. 

The  sequence of funct ions also will fail to converge in the  L2-norm. 

This  cont ras t s  w i th  the  long-open conjecture  t h a t  if all t he  .%-,~ come from 

a finite set of s igma-algebras ,  then  the resul t ing  sequence of funct ions mus t  

converge in L2. 

1. Pre face  

In 1961 D. L. Burkholder and Y. S. Chow proved a basic result [4] that  started 

a very interesting line of research which is still continuing. They showed that  

if E and F are two conditional expectations on a probability space and f is an 

L2-function, then (EF)nf converges pointwise (a.e.). A related but different 

theorem of E. Stein [7] (see also [8]) implies this result for 1 < p < co (and proves 
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more in [,2). In 1962 G.-C. Rota [6] obtained a very general and elegant result, 

the "Alternierende Verfahren" theorem, that contained the result of Burkholder 

and Chow. See [1] for further results in this direction. On the other hand, 

D.S. Ornstein gave an example [5] to show that ( E F ) ~ f  may diverge for some 

L; -functions. 

A natural problem is to consider more than two conditional expectations. 

Rota's theorem gives the convergence for certain types of sequences obtained 

in terms of a sequence of conditional expectations. Recently A. Brunel [3] 

announced a deep new result: if f E L2 then (EIE2... Ek)nf converges point- 

wise (convergence in the L2-norm was already known), where Ei's are finitely 

many conditional expectations. His methods appear to be very intricate, and in 

the general spirit of Stein's methods in [7]. The general problem of convergence 

under the application of a sequence of conditional expectations seems to be still 

open, even for norm convergence in L2. Under the assumption that only finitely 

many conditional expectations are used, however, I. Amemiya and T. Ando [2] 

were able to obtain weak convergence in L2. In this note we will show that this 

finiteness assumption cannot be relaxed for any of these types of convergence 

by constructing a sequence of conditional expectations {En}~ and a bounded 

function f such that En... Elf diverges pointwise. 

O V E R V I E W .  Suppose X C ~ has finite measure, p is Lebesgue measure on X, 

and X is the Lebesgue field (sigma-algebra) on X. Given a subfield $- C X, let 

E~- denote the conditional expectation operator. 

Suppose W is a finite or infinite sequence of fields 

W : ( . . - , - ~ n , " ' '  , -~3 , ' ~2 , ' ~1 )  , for 1 < n < M. 

For each n less than M, let W(n) denote the finite sequence (~-~, . . . ,5rl) .  Let 

W(n) also denote the iterated conditional-expectation operator 

W(n) := Ey,~E.r._I ""Ej:2E71, 

which acts on IL1 (X). 

A finite sequence, W, of fields will be called a word;  an infinite sequence is an 

in f in i t e -word .  The letters U, V, W will be used for words. 

In order to state the theorem, we define two functions. The "orbit supremum" 

function is, pointwise, the supremum 

orb-Sup Wf := sup W(~)f. 
n : n < M  
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Define "orb-Inf" analogously. If W is an infinite-word, allow the abbreviation 

orb-Limsup W f  := l imsup W(,~)f 
n - - * o o  

and similarly for "orb-Liminf". 

The symbols E, ~ and a always denote numbers in (0, �89 

THEOREM: Given any positive a, there exists an infinite-word W such that for 

the identity function f ( x )  : x on the unit interval [-�89 +�89 

orb-LimsupWf > + (1  - a )  

and 

orb-Liminf W f _< - (�89 - a)  

almost-everywhere. 

CONVENTIONS. The symbol "l]" means "disjoint union". Unless specified 

otherwise, any "interval" is left-closed and right-open. The only functions we 

consider are especially simple piecewise linear functions; functions of the form 

h: X ~ ]R, where X : L~k Ik is a finite disjoint union of intervals and where each 

h[1~ has constant slope 1. 

When referring to a subset G of the domain of h, let the complement "G c'' 

mean Domain(h) \ G. 

Fields. Whenever we define a field, ~', on a subset G of R, agree to extend 9 r 

to be a field on R by assuming that every measurable subset of R \ G is in ~'. 

Thus, if we have a function h on X, and on some subset G C X we specify a 

field 5 r, then "Eyh"  makes sense and 

E~h(x)  = h(x) ,  for a n y x E G  c. 

Uniform distribution. A function f :  X --~ R is "uniform onto [A, B)" if, for any 

subinterval I C [A, B), the measure of f - l ( I )  equals the length of I. 

2. Establishing the theorem 

The essential ingredient, a nested "divide and conquer" argument, is Lemma2,  

which is proved in this section. Proofs of the other lemmata are deferred to 

Section 3. 

In the following lemma, the domain of f is partitioned into left and right halves 

and then the distribution of f on the two halves is interchanged. 
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REVERSAL LEMMA, 1: Suppose f: LIAR --* R, where L and R are disjoint equal- 

mass intervals. Suppose f[L is uniform onto [ -S  - 5 , -5)  and f i r  is uniform 

onto [5, S + 6). Suppose that 25, the "gap" between the uniform distributions, 

divides the length S. 

Then there is a word V such that (Vf)[L is uniform onto [--5, S - 5 )  and (Vf)[R 

is uniform onto [ - S  + 5, +5). 

In Figure 3, the transition from panel (b) to panel (c) illustrates the Reversal 

Lemma. Our next lemma refers to the following property: 

STATEMENT P(e): Suppose f is uniform onto interval [A,B),  whose 

length is S := B - A. 

Then, for any small positive 5 (called the "shrinkage") there exists a 

word U and a set G C Domain(f) so that #(G c) = 25 and for each x E G: 

[orb-Sup U f] (x) >_ B - eS 

and 

[orb-Inf U f] (x) <_ A + r 

Moreover, on G our new function Uf is distributed uniformly onto the 

interval [A + 6, B - 6). 

LEMMA 2: P(e) holds for all positive r 

Evidently P(1) holds. Thus this lemma will follow from the following 

implication. 

Proof that P(e)  ==~ P(2e):  Without loss of generality, the domain and range 

of f are both [-�89 1) and so S = 1. 

Assuming that P(E) holds and given a desired shrinkage 5o, we wish to demon- 

strate P(-~e). Pick a positive 5 << 50, which will be specified as the argument 

proceeds. Figure 3(a) shows the uniformly distributed function f ( x )  = x on 

the interval [-�89 �89 let L and R denote the left and right halves of the inter- 

val. As the construction progresses clockwise through the four panels of Figure 3, 

sets L and R will shrink slightly in that mass 45 will be removed from them; 

nonetheless, we will continue to call them L and R. 
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Figure 3 

In the figure, we use Top = +�89 and Bot = -�89 to indicate the top and bottom 

of the range of f .  

3(a) to 3(b): To L and R, apply P(e) with b-shrinkage. This produces a 

word U so that 

[orb-Inf uy] (x) is within c/2 of Bot 

(since c .  [�89 = E/2), for all x E L except for a "discarded" set 

of mass 25. This discarded set, which is actually a finite union 

of subintervals scattered throughout L, is drawn in Figure 3(b) 

at the left side of L. 
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There is a similar romanticization in the graph of Uf over L; it is indeed 

uniformly distributed, but is not actually the identity function as shown. 

3(b)  to 3(c):  The "discarded" parts of L and R are removed from the picture. 

Then we apply a word V to reverse the left and right halves of 

the graph; the left half moves up and the right half drops. 

3(c) to 3(d) :  To the left and right halves of 3(c) ,  apply P(~) with 5-shrinkage. 

This produces a word, call it W, which shrinks the mass of L by 

another 25 and arranges that for every x in this smaller L, 

[orb-Sup WVUf] (x) is within (~/2) + 35 of Top. 

e 2 Since 5 can have been chosen so that ~ + 35 < ~s, we have now 

arranged that,  for x E L, 

[orb-Sup WVUf] (x) _> Top - ~2 

and 

[orb-InfWVUf](x) < Bot + ~c. 

The same holds for x in R, the (slightly shrunken) right half. 

The final step: The function h := WVUf, when restricted to LUR, is necessarily 

uniform onto [Bot + 45, Top - 45). Without loss of generality, 45 < 50. Thus, if 

we define G to be the set of x E L [_J R such that  

h(x) e [Bot + 50, T o p -  50), 

then hie is indeed uniformly distributed onto [Bot + 5o, T o p -  50), as desired. 

| 

We now need to embellish the above lemma so that  it applies to functions 

which are not quite uniformly distributed. 

Definition: Say that  f :  X -* • is "nicely distributed on [A, B)" if there is a 

subset G C X such that 

�9 f l c  is uniform onto [A, B). 

�9 The complement, X \ G, is a finite disjoint union of intervals, U g Ik, such 

that each fllk is uniform onto some subinterval of the open interval (A, B). 
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LEMMA 4: Suppose f :  X --~ ]~ is nicely dis tr ibuted onto [A, B) .  Then  for any 

small  e, there is a word U so that  U f  is nicely dis tr ibuted on [A + ~, B - ~). 

Moreover, 

(5) and 

[orb-Sup U f] (x) >_ B - 

[orb-Inf U f]  (x) <_ A + E, 

for all x E X off a set of  mass  less than ~. 

The benefit of this lemma is that  ~ can be chosen arbitrari ly small compared 

to the measure of the intervals Ik. Iteratively using this lemma establishes the 

theorem, as follows. 

Proo f  of the Theorem: Set A0 := �89 and f0 : :  f .  

For n : 1 , 2 , . . . ,  let en : :  a / 2  n. Since fn-1  is nicely distributed onto 

[ - A n - l , A n - 1 ) ,  we can apply Lemma 4 to fn-1,  with e = e~. This produces a 

function 

fn : =  Unfn-1 

which is nicely distributed onto f -An ,  An), where An := An-1 - en. Moreover, 

since el + "'" + ~n is less than a,  

(6In]) and 

1 
[orb-Sup Unfn-1]  (x) > +-~ - a 

1 
[orb- In fUnfn_ l] (X)  < --~ + a 

for all x off a "bad set" whose mass is less than en- 

Since the masses of the bad sets are summable,  the Borel-Cantelli lemma tells 

us -af ter  having deleted a nullset-  that  for every x, inequality (6[n]) holds for 

infinitely many n. 

Letting W be the infinite-word . . .  U3U2U1, then, gives us the conclusion of the 

theorem. 

3. D e t a i l s  

We now sketch the minutia of the two unproved lemmata  of the preceding section. 
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Notice that if the procedure used to prove P(e) ==~ p(2~)  is preceded 

by "Reversal", that is, it becomes [REVERSAL, P(~), REVERSAL, P(~)], then the 

resulting function Uf will be nicely distributed. 

Thus we may henceforth assume, when we "apply P(~)"  to a function f ,  that  

the output function Uf is nicely distributed, and that  shrinkage = a was used. 

Sketch of proof of Lemma 4: Recall the set G and intervals U K Ik from the 

definition of "nicely distributed". 

Suppose we take a number a which is infinitesimal compared to the given ~. 

Apply P(a) to fiG. This will produce an infinitesimally smaller set G and 

infinitesimally smaller interval [A, B),  so that (5) holds for all x �9 G except 

for a set of infinitesimal mass (mass = 2a). The upshot is, we really only have 

to establish (5) for most points x �9 IlK Ik. 

Since the number of intervals, K, is known in advance, it suffices to take a 

single interval I = Ik and show how to establish (5) for all x �9 I except for a set 

of infinitesimal mass. 

Again, fix a number ~ << ~. Since f l l  is uniform onto some subinterval of 

(A, B), there is a subset J C G on which f has the same distribution as on I. 

Thus 

]l(G-.J)ul is uniform onto [A,B). 

Now apply P(a )  to this f l(c- .J)ul .  For all points x �9 I except for a set of 

infinitesimal mass, inequality (5) holds. And this operation only infinitesimally 

changes G and [A, B).  | 

Proof of the Reversal Lemma: There is no loss of generality in assuming that 

the gap, 26, equals 2. Nor in assuming that 

-1 K 
L =  U Ik and R =  U I k  , 

k=-K k=l 

where Ik is the interval [2k - 1, 2k + 1). 

Given distinct indices k and ~, let $'k,t be the field which links corresponding 

points in Ik and It. That  is, a subset D C Ik U It is in $-k,t precisely when, for 

every x, 

2 k + x E D  ~ 2 t + x E D .  

On the complement of Ik u It, as per our convention, $-k,t agrees with the full 

Lebesgue field on R. 
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Now suppose f[,~ and f l i t  are slope i onto intervals of the form [A - 3, A - 1) 

and [A + 1,A + 3), respectively. Condition f on $-k,~ and call the resulting 

function h. Then 

hll ~ and hi1 , are b o t h s l o p e l  onto [ A -  1, A +  1). 

Thus the effect of conditioning is to raise the distribution on Ik by the gap length, 

and to lower the distribution on It by the gap length. 

Consequently, one can prove the Reversal Lemma by starting with f ( x )  = x 

and conditioning successively on $-k,e as the pair (k, ~) takes on these values: 

( -1 ,1) ,  ( -1 ,  2), ( -1 ,  3), . . . ,  ( -1 ,  K), 

and continue, 

( -2 ,1 ) ,  ( -2 ,2 ) ,  ( -2 ,3 ) ,  . . . ,  ( -2 ,  K),  

( -3 ,1) ,  ( -3 ,  2), ( -3 ,  3) . . . .  , ( -3 ,  g ) ,  

( - K ,  1), ( - K ,  1), ( - K ,  1) . . . .  , ( - K ,  K ) .  

The successive conditioning on these K 2 many fields essentially exchanges the 

distributions on L and R. | 
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